

- 1991 1996 Shiraz University B.Sc., Materials Engineering - Metal Forming
- 1998 2001 🛛 Shiraz University

M.Sc., Materials Engineering - Characterization and Selection of Materials

Career Timeline

□ Sistan & Balouchestan University

Laboratory Expert and Instructor, 1996 - 1998

Niroo Research Institute

Researcher, Test Engineer and Laboratory Manager, 2002 - 2005

Moshanir Consultants

Senior Materials and Welding Engineer, 2005 - 2016

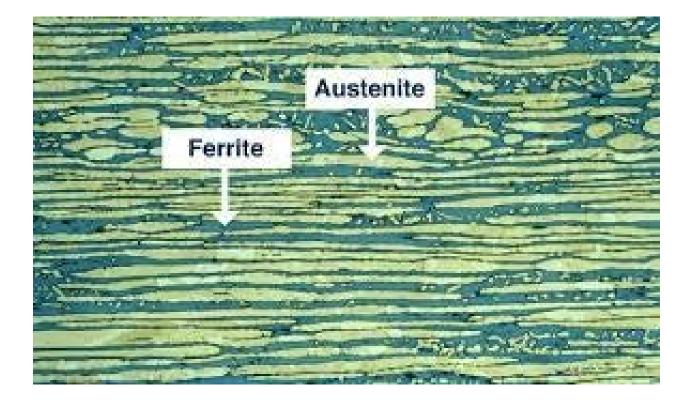
Nargan Co.

Senior Materials and Corrosion Engineer, 2016 – Present

www.linkedin.com/in/khodaparasti

Kamran Khodaparasti

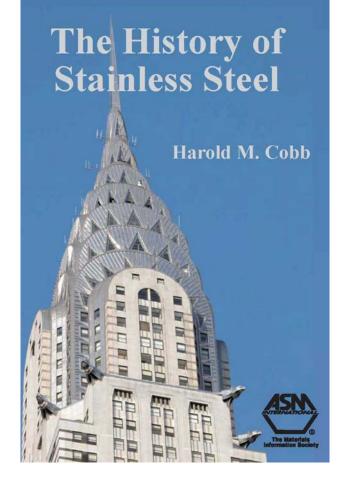
Materials Engineer



kamrankhodaparasti.ir

Duplex stainless steels (DSS) are finding increasing use in the refining industry, primarily because they often offer an economical combination of strength and corrosion resistance.

These stainless steels typically have an annealed structure that is generally half austenite and half ferrite, although the ratios can vary from approximately 35/65 to 55/45.



Most refinery applications where DSS are used are corrosive, and DSS or other higher alloys are required for adequate corrosion resistance.

However, some plants are also starting to consider DSS as a "baseline" material. They are using it in applications where carbon steel may be acceptable, but DSS have been shown to be more economical considering their higher strength and better long-term reliability.

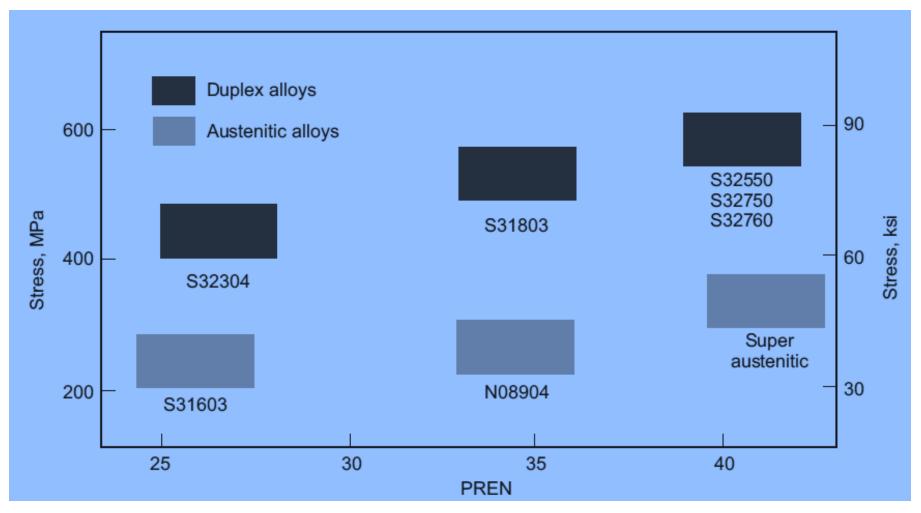
DSS have existed since the 1930s. However, the first generation steels such as Type 329 had unacceptable corrosion resistance and toughness at weldments. Hence, the initial applications were almost exclusively heat exchanger tubing, particularly in corrosive cooling water services, and shafting or forgings.

In the 1980s, second generation DSS became commercially available which helped overcome the problems at the welds. These new grades had nitrogen additions, which along with improved welding practices designed for the DSS, led to the welds' mechanical (strength and toughness) and corrosion properties being comparable to the annealed base metal.

The DSSs most commonly used today in refineries include those with 22 %, 25 % and 27 % Cr. The 25 % Cr (super duplex grades) and 27 % Cr (hyper duplex grade) usually also contain more molybdenum and nitrogen, and so have higher PREN values than the 22 % Cr duplex steels.

DSSs are often used in lieu of austenitic SS in services where the common austenitic would have problems with chloride pitting or chloride stress corrosion cracking (CSCC).

Higher alloyed DSSs like super duplex and hyper duplex are an economic alternative to higher alloys with similar corrosion resistance.


Duplex Stainless Steels Specifications

Product Form	ASME or ASTM Specifications		
Plate, Sheet	SA-240		
Bar Products	SA-479, A276		
Pipe	SA-790, A928		
Tubing	SA-789		
Fittings	SA-815		
Forgings	SA-182		
Castings	SA-351, A890, A995		
HIP Products	ASTM A988		
Bolting	ASTM A1082		
Testing	ASTM A923, ASTM G48, ASTM A1084		

Mechanical Properties of Various Duplex and 316L

UNS	Type	Tensile Strength, min		Yield Strength, min		Elongation	Hardness, max	
Number	Туре	Мра	ksi	Мра	ksi	min %	Brinell	Rockwell C
S32304	2304	600	87	400	58	25.0	290	—
S32101	2101	650	95	450	65	30.0	290	—
S32202	2202	650	94	450	65	30.0	290	—
S32003	2003	620	90	450	65	25.0	293	31
S82011 (>5 mm)	2102	655	95	450	65	30	293	31
S82441 (≥10 mm)	2404	680	99	480	70	25	290	—
S31803	—	620	90	450	65	25.0	293	31
S32205	2205	655	95	450	65	25.0	293	31
S32550	255	760	110	550	80	15.0	302	32
S32750	2507	795	116	550	80	15.0	310	32
S32760	Z100	750	108	550	80	25.0	270	—
S32906 (≥4 mm)	—	750	109	550	80	25.0	310	32
S32707 ^a	2707	920	133	700	101	25	318	34
S31603	316L	485	70	170	25	40.0	217	95 R _b ^c
N08825 ^b	825	586	85	241	35	30.0	_	—

Comparison of the Proof Stress and Pitting Resistance of Duplex and Austenitic SS

Temperature Limits

ISO 21457 requirement for uncoated DSS in marine atmospheric environments

Type 22Cr Maximum operating temperature 80 to 100 °C

Type 25Cr Maximum operating temperature 90 to 110 °C

Table 2 CRAs commonly used in subsea equipment										
Generic Type	Common Name	UNS		Typica	l Compo	osition Typical Pr MP		Properties, Pa ¹	Typical Min Design Temp	PREN ² / PREw
			Cr	Ni	Mo	Others	Min YS	Min TS	°C	(min)
Austenitic Stainless Steels	316L SS	S31603	18	12	2.5		205	515	-196	22.6
	Nitronic 50	S20910	20.5	12.5	2.25	Mn, Nb, N	380	690	-196	28.6
Super-austenitic Stainless Steels	6Mo	S31254	20	18	6	N	300	650	-196	42.2
	904L	N08904	21	25	4.5	Cu	220	490	-196	32.2
	Alloy (Sanicro) 28	N08028	27	31	3.5	Cu	215	550	-196	35.9
Precipitation-Hardened Aust. SS	Grade 660	S66286	15	25	1.25	Al,Ti,V,B	585	895	-29	16.8
Duplex Stainless Steels	Nitronic 19D	S32001	19.7	1.6	0.06	Mn, N, Cu	450	620	-50	22
	22% Cr Duplex	S31803	22	5.5	3	N	450	620	-50	30.5 ⁶
	25%Cr Superduplex	S32550	25	5.5	3	N	600	760	-50	32.2 5
	25%Cr Superduplex	S32750	25	7	3.5	N	550	800	-46	37.7 ⁵
	25%Cr Superduplex	S32760	25	7	3.5	N,Cu,W	550	750	-46	37.45
	25% Cr Superduplex	S32974	25	7	3.2	N,Cu,W	550	800	-46	36.7 ⁵

EEMUA Publication 194

Temperature Limits (Cont.)

NORSOK standard M-001

Table 10 – Metallic materials for pressure retaining purposes								
Material	Minimum design	Impact	Maximum oper °C	Netes				
wateria	temp. °C	testing required	Marine environment	Seawater	Notes			
Carbon and low alloy st	eel							
235	- 15							
235LT	- 46	Yes			1			
360LT	- 46	Yes			1			
3.5 % nickel steel	-101	Yes						
Martensitic stainless ste	els							
SM13Cr	- 35	Yes						
13Cr	- 10							
13Cr valve trim parts	- 29				2, 3			
13Cr4Ni	- 46	Yes						
13Cr4Ni double tempered	-100	Yes						
Austenitic stainless stee	els							
Type 316 SS	-196	Yes	60		4			
Type 6Mo SS	-196	Yes	120	20	4			
Duplex stainless steels								
Type 22Cr duplex SS	- 46	Yes	100					
Type 25Cr duplex SS	- 46	Yes	110	20				

Sour Service Limits

NACE MR0175/ISO 15156 Recommendations

includes some recommended limits of H2S partial pressures for the avoidance of sulphide stress cracking, as follows:

Duplex stainless steel (i.e. PREN/PREw 30 to 40 and Mo \ge 2%): 0.10 bar (abs)

Super duplex stainless steel (i.e. PREN/PREw > 40 and < 45): 0.20 bar (abs).

Note: See also tables A.24 & A.25

EEMUA Publication 194

22% Cr Duplex stainless steel: 0.10 bar (abs) at pH 3.5 and higher

25% Cr Super duplex stainless steel: 0.25 bar (abs) at pH 3.5 to 4.5

0.50 bar (abs) at pH greater than 4.5.

Note: The limits for duplex stainless steel were largely developed for downhole tubing grades. For applications involving welding, further qualification for the field-specific conditions is recommended.

Welding Requirements for Duplex Stainless Steels

NACE MR0103/ISO 17495 Requirements

Fabrication and repair welds in all wrought and cast duplex stainless steels shall be produced using a welding procedure qualified by performing the following tests on specimens taken from the WPQT coupon(s).

a) A hardness survey shall be performed in accordance with Annex C. The average hardness shall not exceed 310 HV, and no individual reading shall exceed 320 HV.

b) Metallographic ferrite measurements shall be performed in accordance with ASTM E562. The average ferrite content in the weld deposit and HAZ shall be within the range of 35 % to 65 %, with a relative accuracy of 10 % or lower.

Welding Requirements for Duplex Stainless Steels

NACE MR0175/ISO 15156 Requirements

The hardness of the HAZ after welding shall not exceed the maximum hardness allowed for the base metal and the hardness of the weld metal shall not exceed the maximum hardness limit of the respective alloy used for the welding consumable.

A cross-section of the weld metal, HAZ, and base metal shall be examined as part of the welding procedure qualification. The microstructure shall be suitably etched and examined at ×400 magnification and shall have grain boundaries with no continuous precipitates. Intermetallic phases, nitrides, and carbides shall not exceed 1.0 % in total. The sigma phase shall not exceed 0.5 %. The ferrite content in the weld metal root and unreheated weld cap shall be determined in accordance with ASTM E562 and shall be in the range of 30 % to 70 % volume fraction.

Find more valuable information about DSS at:

API TR 938-C has four primary objectives

- a) potential environment-related failure mechanisms and preventative measures to avoid them;
- b) typical material specification requirements used by refineries;
- c) typical fabrication specification requirements used by refineries;
- d) examples of applications of DSSs within refineries.

API TR 938-C table of contents

1	Scope	7
2	Normative References	7.1
3 3.1 3.2	Terms, Definitions, and Acronyms Terms and Definitions Acronyms	7.3 7.4 7.5
4 4.1 4.2 4.3 4.4 4.5	Metallurgy of DSSs Background Solidification Problems to be Avoided During Welding Low and High Temperature Properties Hardness Conversions	7.6 7.7 7.8 7.9 7.1
5 5.1 5.2 5.3 5.4 5.5 5.6 5.7	Potential Environment-Related Failure Mechanisms Chloride Pitting and Crevice Corrosion Corrosion in Seawater Chloride Stress Corrosion Cracking (CSCC) Hydrogen Stress Cracking (HSC)/Sulfide Stress Cracking (SSC) Ammonium Bisulfide Corrosion Naphthenic Acid Corrosion	An An An An An
6 6.1 6.2 6.3 6.4 6.5 6.6	Material Specifications Typical Specification Requirements for Wrought Materials Welded Versus Seamless Tubing and Piping. Use of Integrally Finned Tubing. Use of Twisted Tubes Duplex SS Castings and HIP Components. Duplex SS Used as a Cladding Material	•

7	Fabrication Requirements
7,1	Typical Specification Requirements
7,2	Typical Welding Processes and Filler Metals
	Dissimilar Metal Welding
7.4	Ferrite Measurements vs. Austenite Spacing
7.5	Cold Working and Hot and Cold Bending
7.6	Tube-to-tubesheet Joints
7,7	Post-Fabrication Cleaning
7.8	NDE Methods
7.9	Hydrostatic Testing
7.10	Coating Requirements and Risk of CUI
8	Examples of DSSs Applications within Refineries
Anne	x A (informative) Example of Special Material Requirements for DSSs
Anne	ex B (informative) Example of Special Welding Procedure Qualification Requirements for DSSs $\ .$
Anne	ex C (informative) Example of Special Welding and Fabrication Requirements for DSSs
Anne	ex D (informative) Example of a Duplex SS Casting Specification
Anne	ex E (informative) Example of a Hot Isostatically-pressed (HIP) Duplex SS Material Specification .

Some Tips from API TR 938-C

ASME Section VIII requirements for impact testing for DSS base and weld metals are given in UHA-51(d)(3)(a), which requires testing of all DSSs thicker than 10 mm (3/8 in.) or those with an MDMT less than –29 °C (–20 °F).

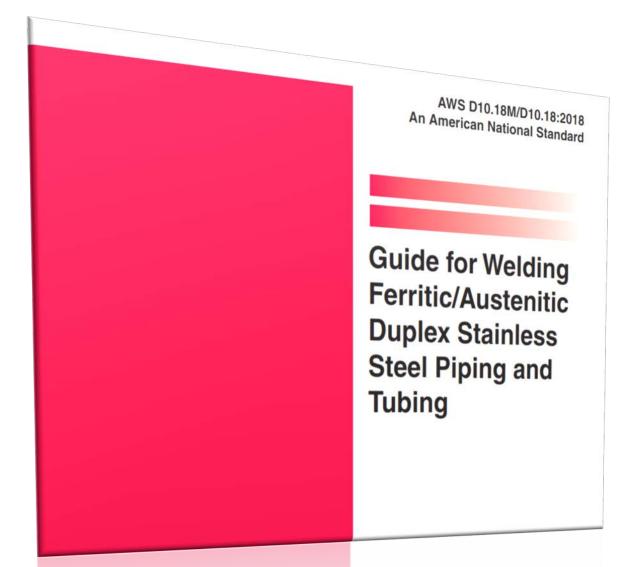
ASME B31.3 requires testing of welds when the MDMT is less than –29 °C (–20 °F) and of base metals when the MDMT is below the minimum allowable temperature for the specific grade.

Maximum operating temperatures are limited by the susceptibility of the ferritic phase to 475 °C (885 °F) embrittlement and other embrittlement mechanisms.

Most Codes applicable to refinery equipment and piping limit the various DSS grades to between 260 °C to 340 °C (500 °F to 650 °F), maximum, to avoid these problems.

Welds are more prone to sigma formation than base materials, and hence, these temperature limits are especially important with welded components.

Some Tips from API TR 938-C (Cont.)


Grade	ASME Section VIII (Div. 1) °C (°F)	ASME B31.3 °C (°F)
S32304	316 (600)	316 (600)
S32101	316 (600) Code Case 2418	NL
S32202	316 (600)	NL
S32003	343 (650) Code Case 2503	343 (650)
S82011	343 (650) Code Case 2735	NL
S82441	316 (600) Code Case 2780	NL
S31803/S33205 (Note 1)	316 (600)	316 (600)
S32550	260 (500)	NL
S32750	316 (600)	316 (600)
S32760	316 (600)	316 (600)
S32906	316 (600)	NL
S32707	260 (500) Code Case 2586	NL

Some Tips from API TR 938-C (Cont.)

Table 9—Welding Consumables

Process	22 % Cr	25 % Cr (Note 1)	27 % Cr				
SMAW	SFA 5.4 E2209	SFA 5.4 E2553, E2594, or E2595	Not applicable				
GTAW/GMAW	SFA 5.9 ER2209	SFA 5.9 ER2553, or ER2594	As recommended by alloy supplier				
SAW	SFA 5.9 ER2209 with a flux designed for DSSs	SFA 5.9 ER2594 with a flux designed for DSSs	As recommended by alloy supplier				
CAW SFA 5.22 E2209TX-X or EC2209 SFA 5.22 E2553TX-X, E2594TX-X, Not applicable							
NOTE This table does not cover some of the specialized 25 % Cr alloys. The material manufacturer's (i.e. the alloy supplier's) recommendations on welding consumables should be followed.							

AWS D10.18 for welding

This presentation was developed by Kamran Khodaparasti.

Publication date: May 2023

References: API TR 938-C ISO 21457 NORSOK M-001 EEMUA 194 NACE MR0175/ISO 15156 NACE MR0103/ISO 17495 Internet Documents